Mojified Pacman: A Deterministic and Fully Observable Variant for PDDL
Modeling Competitions

Bruno Ribas, Igor Penha, Lucas Bergholz, Bruno Ribeiro

University of Brasilia,
Brasilia, DF — Brazil
bruno.ribas @unb.br, igorpenha.it@ gmail.com, lucas.bergholz@ gmail.com, bbrunoo@icloud.com

Abstract

In this work, we address a challenging planning problem
inspired by the classic arcade game Pacman, reimagined as a
deterministic and fully observable turn-based variant. The
objective is to eliminate adversaries and navigate a grid
environment enriched with dynamic elements such as
teleportation portals, ice tiles, and collectible fruits that
affect agent capabilities. The game’s mechanics involve
asynchronous movement, conditional interactions, and
spatial reasoning, making it a complex but natural candidate
for PDDL modelling. While the problem can be expressed
using standard PDDL features, its intricacies reveal
modelling challenges that impact plan optimality and solver
performance. We propose a benchmark composed of
procedurally generated maps with varying combinations of
terrain features and difficulty levels, classified into three
competition tracks: agile, satisficing, and optimal. This work
offers a new, expressive domain for evaluating the
capabilities of planning systems and raises important
questions about the trade-offs between modelling precision
and solving efficiency.

Introduction

Designing planning problems based on video games
presents a compelling opportunity to evaluate the
expressiveness and efficiency of planning tools in highly
dynamic environments. Grid-based games, in particular,
which incorporate movement, conditional interactions, and
goal-driven behaviour, naturally lend themselves to
planning representations. However, complexity can
increase significantly with the introduction of multiple
agents, rule-based adversaries, and varying terrains.

Among the most prominent tools for modelling such
problems is the Planning Domain Definition Language
(PDDL) (McDermott 2000), whose high-level abstraction
allows a concise representation of fundamental domain
components. Its adoption was largely consolidated through
the International Planning Competition (IPC), held within
the International Conference on Automated Planning and
Scheduling (ICAPS), which established PDDL as a
standard for evaluating planning systems.

In this work, we explore a modified version of the classic
arcade game Pacman (Iwatani 1980), adapted for Al

planning and implemented on the CD-MOJ platform.! Our
turn-based variation, titled Mojified Pacman, incorporates
several strategic elements such as diverse ghost behaviours,
collectible power-ups (fruits), teleportation portals, and ice
tiles that alter movement mechanics. These additions
enhance the domain’s expressiveness and introduce new
challenges for modelling and resolution. To better
understand these dynamics, Figure 1 provides an example
map with key elements such as walls, ice tiles, and portals,
illustrating the complexity and depth of this enhanced game
environment.”

SCORE=0

VAL IDATE

INSIRAOSMOVIMENTOSAGUL,.

Figure 1: Mojified Pacman.

The benchmark aims to achieve two primary goals:
firstly, to provide a rich environment for evaluating
planning models in terms of correctness, optimality, and
efficiency; and secondly, to investigate the trade-offs
between expressive PDDL modelling and planner
performance across various competition tracks — agile
(speed-focused), satisficing (cost-aware), and optimal
(minimal-cost). Like Sokoban (Imabayashi 1982) and other
path-based puzzle games, modelling reachability,
interactions, and dynamic rules is crucial, especially when
agents move asynchronously and conditionally affect one
another.

"https://moj.naquadah.com.br.
*https://icebergholz.itch.io/pacman-mojificado.

By constructing a PDDL domain and conducting a
structured evaluation on procedurally generated maps, we
analyse the impact of different configurations on a planner’s
ability to find valid or optimal solutions within specific time
ranges. This paper introduces a new game-inspired
benchmark for the planning community and sheds light on
modelling and reasoning within richly dynamic domains.

The Game

For this modified version of Pacman, called Mojified
Pacman (pun with the platform that the game was
launched), the objective of the game will be altered.
According to the track competed for by the participant, the
objective for each competition track will be:

¢ Agile: defeat all the ghosts as quickly as possible;

 Satisficing: defeat all the ghosts and collect as many
pellets as possible in the meantime, to achieve the
lowest cost of movements possible;

* Optimal: eliminate all the ghosts with the lowest cost of
movements.

As the game is not in real time like the original, it will be
divided into turns. During each turn, Pacman can move one
cell, after which all ghosts will make their moves, allowing
Pacman to move again. The player is always in motion,
meaning that regardless of collecting a fruit or pellet, or
colliding with a ghost, Pacman must always move to
another location. In case the player tries to move in the
direction of a wall, Pacman will remain in the same cell,
while the ghosts will make their movements.

Additionally, unlike the original game, there are only
three types of ghosts, each of them following a set of
deterministic movement patterns:

* Red: moves in a clockwise direction, changing its
movement direction when it encounters a wall. It starts
moving to the right until it collides with a wall, then
moves down, then left, then up. This ghost never stops
moving; if it encounters a wall, it tries to move in the
next direction;

¢ Green: mimics Pacman’s movements. If Pacman moves
down, this ghost moves down; if he moves left, the ghost
moves left, and so on;

* Blue: moves opposite to Pacman’s movements. If
Pacman moves down, this ghost moves up; if he moves
left, the ghost moves right, and so on.

Furthermore, each ghost has a corresponding fruit of the
same colour. When the player eats one of these fruits, they
can eliminate the corresponding ghost at any time during
the game, unlike in the original game where this was only
possible for a limited time. It is important to note that the
player cannot have two active fruits simultaneously. For
example, if the player eats the red fruit (enabling them to
eliminate the red ghost), and then eats the blue fruit a few
moves later, they will only be able to eliminate the blue
ghost from that point onward.

Another addition to this version of Pacman is the
inclusion of different types of flooring:

* Normal Floor: Represented by a space character, this is
a standard type of floor with no special features.
Underneath every ghost and Pacman, at the moment
they appear in the game, there is this type of floor;

* Ice Floor: Pacman slides across this type of floor in the
direction he enters, continuing until it reaches a cell
without ice. However, if he encounters a wall along the
way, he will collide with it and then reverse direction
until he exits the ice;

* Portal: The portal floor acts as a link to another point on
the map. There can only be a single pair of portal cells,
or no pair at all. If Pacman enters a portal, he will exit at
the other portal cell.

As previously mentioned, both the Satisficing and
Optimal tracks implement action-cost, meaning that each
possible movement made by the player, the corresponding
cost of it will be added to the total score of movements. All
possible movements increase cost, but, some will increase
more than others as detailed in Table 1:

Table 1: Costs per Movement.

Movement Cost
Normal movement 2
Any fruit is activated 4
Moves into pellet (without any fruit) 1
4
8

Moves into wall without fruit
Moves into wall with fruit

With the modifications made to the original game, some
border cases appear when you combine the new floors and
mechanics. To clear up some of these cases:

* When a player walks into a portal, the cost of the
movement will be as if he walked into a normal floor,
even though he gets teleported;

* When a player walks over ice, for each tile he passes,
the cost increases according to the cost of moving into a
normal tile (2 if no fruit is activated or 4 if the player has
a fruit equipped);

o If the player hits a wall while sliding on ice, the cost of
hitting it isn’t applied. This happens because the cost is
applied only when the player purposely moves into a
wall.

PDDL Formulation

While the domain exhibits structural similarities to
Sokoban, particularly in its grid based movement and
spatial reasoning, it significantly diverges in both
complexity and objectives. In contrast, the formulation
presented in this work introduces dynamic elements that
extend far beyond Sokoban’s scope. It incorporates multiple
agents, including Pacman and ghosts, each governed by
their own movement and behavioral rules. The presence of
special types of floors — such as icy tiles that affect
directional movement and portals that enable teleportation -
further adds to the complexity of the domain. Furthermore,
the domain includes combat-like mechanics through

predicates such as check-kill and check-dead, which govern
the temporal logic of interactions between Pacman and
ghosts.

The model for Pacman follows a sequential turn-based
structure and is defined using PDDL version 2.1 (Fox and
Long 2003). Each turn begins with Pacman’s movement.
After Pacman moves, the system checks whether he has
eliminated any ghosts. Subsequently, it verifies whether
Pacman has been eliminated by any ghost. If Pacman’s new
position contains a fruit, he collects it, and the effect of the
fruit remains active until he either eliminates the
corresponding ghost or acquires a different fruit.

Following Pacman’s turn, control passes to the ghosts.
Each ghost executes its movement individually. After all
ghosts have moved, the model reevaluates whether, based
on their new positions, Pacman has either eliminated or
been eliminated by a ghost. Once this evaluation is
complete, the next turn begins with Pacman again.

Types, objects and fluents

In this domain, no explicit types are defined beyond
positional coordinates. The problem is modeled entirely
over a two-dimensional Cartesian grid.

¢ Adjacency relations:

— (inc ?a ?b), (dec ?a ?b) establish successor
and predecessor links between coordinates.

¢ Environment features:

- (wall ?x ?y), (dot ?x ?y), (ice ?x ?y),
(tele ?x ?y) characterize special grid cells such
as walls, collectible dots, slippery tiles, and
teleportation portals.

* Entity positions:

- (enemyX-at ?x ?y), (fruitX-at ?x ?y),
(player—-at ?x ?y) represent the locations of
ghosts, fruits, and Pacman (X € {B, G, R}).

¢ Game-flow auxiliaries:

— (has-action), (check-kill),
(check-dead), (check-from-enemy),
(get—fruit) encode auxiliary conditions for turn
coordination, combat outcomes, and fruit collection.

State markers:

— (is-dead), (deadX) register whether Pacman or
a specific ghost has been eliminated (X € {B, G, R}).

* Inventory markers:

— (player-withX) capture whether Pacman is
currently carrying a fruit of type X € {B, G, R}.
* Movement effects:
— (iceD), (iceU), (icel), (iceR),
(telemove) express special movements triggered

by icy surfaces (with direction down, up, left, right) or
teleportation tiles.

* Enemy intentions:

- (enemyX-up), (enemyX-down),
(enemyX-left), (enemyX-right) specify the
planned movement directions of each ghost (X € {B,
G,R}).

Actions

The model defines a total of fifty-five actions; however,
many of these are variations of a core set. The principal
distinct actions include: check_kill, check_dead,
get_fruit, movement, movement_at_ice,
teleportation, movement_ghosts, and
movement_of_dead._ghost. As indicated by their
names, the movement action governs Pacman’s movement
from one tile to an adjacent tile, while the
movement _ghosts action controls the movement of
ghosts according to predefined behavioral rules. When a
ghost is in a “dead” state during its turn, it executes the
movement_of_dead_ghost action, which effectively
results in skipping the turn without performing any
additional operations.

The check_kill and check_dead actions determine
whether Pacman has killed a ghost or has been killed by
one. The logic prioritizes checking whether Pacman kills a
ghost first, only afterward does the system verify whether
another ghost has subsequently killed Pacman. These
actions take the x and y coordinates of the game grid as
parameters. For these actions to be executed, it must be the
appropriate time step, and Pacman must be located at the
specified (X, y) position.

When the check_kill action is executed, it iterates
through all ghosts to determine if Pacman possesses the
fruit that grants him the ability to eliminate a ghost of a
specific color. If a ghost of that color is located on the same
tile as Pacman, then the ghost’s dead flag is set to true and
the ghost ceases to exist on the grid. Conversely, the
check_dead action verifies whether Pacman occupies the
same tile as a ghost for which he lacks the corresponding
fruit. If this condition is met, Pacman is considered dead.

Listing 1: Example of domain in PDDL.
1 (:action check_kill
2 :parameters (?px ?py - position)

E :precondition (and (check-kill) (player-at ?px ?py))
4 reffect (and

5 (when (and (player-at ?px ?py) (enemyB-at ?px ?py)
6 (player-withB))

7 (and (not (enemyB-at ?px ?py)) (deadB)

8 (not (player-withB))))

9 (when (and (player-at ?px ?py) (enemyG-at ?px ?py)
10 (player-withG))

11 (and (not (enemyG-at ?px ?py)) (deadG)

12 (not (player-withG))))

13 (when (and (player-at ?px ?py) (enemyR-at ?px ?py)
14 (player-withR))

15 (and (not (enemyR-at ?px ?py)) (deadR)

16 (not (player-withR))))
17 (not (check-kill)) (check-dead))

19 (:action check_dead
20 :parameters (?px ?py - position)
21 :precondition (and (check-dead) (player-at ?px ?py)

22 reffect (and

23 (when (and (player—-at ?px ?py)

24 (or (enemyB-at ?px ?py)

25 (enemyG-at ?px ?py)

26 (enemyR-at ?px ?py)))
27 (is—-dead))

28 (when (and (not (check-from-enemy))

29 (not (telemove))

30 (not (geloC)) (not (geloB))
31 (not (geloD)) (not (geloE)))
32 (get-fruit))

33 (when (check-from-enemy)

34 (and (not (check-from-enemy))

35 (not (has—-action))))

36 (when (and (deadR) (deadG) (deadB))
37 (not (has-action)))
38 (not (check-dead))))

When the check_dead signal is triggered by the ghosts
after their respective movements, control is transferred to
Pacman. However, if the check_dead event is initiated by
Pacman and the current position does not correspond to a
special floor tile, the get _fruit action must be executed.
This action receives the x and y coordinates of Pacman’s
current position as parameters and verifies whether a fruit is
present at that location. If a fruit exists, Pacman activates it
to indicate its collection. As a result, the fruit is removed
from the grid, and any previously activated fruit is
deactivated, ensuring that only one fruit remains active at
any given time.

During Pacman’s movement phase, if he enters a portal,
the teleportation action is invoked. This action
requires two coordinate pairs, (X, y) and (X, y), representing
the entry and exit portals, respectively. For teleportation to
occur, Pacman’s current position must match the
coordinates of a portal, and it must not coincide with the
execution of either check_kill or check_dead. Once
these conditions are met, teleportation is executed
immediately, relocating Pacman to the exit portal.

When Pacman moves onto an icy floor tile, the
movement_at_ice action is triggered. This action takes
three parameters: x, y, and z. The precondition for its
execution is that Pacman is currently located at coordinates
(X, y), and the movement occurs on an icy surface.
Additionally, it is assumed that the check_kill and
check_dead actions have already been performed prior to
initiating this movement.

The parameter z represents the next coordinate in the
direction of movement. For example, if Pacman is moving
to the left, the condition (dec ?x ?z) must hold, indicating
that z is one unit to the left of x. Conversely, if moving to
the right, the condition (inc ?x ?z) applies. Similar logic is
used for vertical movement, where the y-coordinate is
adjusted accordingly.

If the tile in the direction of movement is a wall, the
ice_to_the_wall action is executed instead. This action
causes Pacman to slide in the opposite direction on the icy
surface, effectively reversing his intended movement.

Listing 2: Example of domain in PDDL.

1 (:action ice_to_the_wall

2 :parameters (?x ?y ?yn - position)

E :precondition (and (player-at ?x ?y) (dec ?x ?xn)
4 (not (check-dead)) (icel)

5 (not (check-kill)) (wall ?xn ?y))
6 :effect (and (not (icel)) (iceR)))

o

raction movement_at_icel

9 :parameters (?x ?y ?xn - position)

10 :precondition (and (player-at ?x ?y) (dec ?x ?xn)
11 (icelL) (not (check-dead))

12 (not (check-kill))

13 (not (wall ?xn ?vy)))

14 :effect (and (not (player-at ?x ?y))
15 (player—-at ?xn ?y)
16 (when (not (ice ?xn ?y)) (not (icel)))

(
17 (when (tele ?xn ?y) (telemove))
18 (not (dot ?xn ?y)) (check-kill)

19 (increase (total-cost) (move))))

Corner Cases

The model also accounts for several corner cases that arise
from interactions between different game mechanics,
ensuring the correctness and consistency of behavior across
complex situations.

One such case occurs when Pacman eliminates a ghost
while on an icy tile. Since icy floors affect movement
continuity, the model must ensure that the ghost elimination
is processed correctly before any additional movement is
triggered by the ice and when the next move has a different
cost because he is no longer carrying the fruit. To handle
this, the model enforces the sequential execution of
check_kill and check_dead prior to the continuation
of the sliding motion, avoiding logical conflicts and
ensuring correct ghost state transitions.

One such case occurs when Pacman eliminates a ghost
while standing on an icy tile. Since icy floors cause
continuous movement and fruit effects influence action
costs, the model must ensure that the ghost elimination is
correctly processed before any further movement is
triggered by the ice — particularly when the next move has
a different cost due to the loss of the fruit effect. To handle
this, the model enforces the sequential execution of
check_kill and check_dead before allowing the
sliding motion to continue, thereby avoiding logical
conflicts and ensuring accurate state transitions for both
Pacman and the ghost.

Another important scenario involves Pacman exiting an
icy surface directly into a portal or into a floor with a dot. In
these cases, the model must apply multiple effects in a
precise order: removing the ice effect, updating Pacman’s
position, and then executing the corresponding action (e.g.,
teleportation or fruit collection). This is achieved using
when clauses and auxiliary predicates (e.g., iceL, iceR,
telemove) to track the player’s state and environmental
interactions, maintaining the atomicity of each event.

A more intricate edge case arises when a ghost is
standing on top of a fruit that Pacman does not currently
possess. If Pacman enters the tile with the correct fruit

already active, he eliminates the ghost via check_kill.
Subsequently, during the same time step, he must also
execute get _fruit to collect the new fruit located on that
tile. The model handles this by sequencing the effects so
that ghost elimination precedes fruit collection. This
ensures that only one fruit remains active at any given time
and that Pacman’s inventory is updated accordingly.

Additionally, the system handles rare but possible
overlaps, such as Pacman entering a tile that simultaneously
contains a teleportation portal and a ghost. The model
ensures that combat resolution (check_kill and
check_dead) takes precedence, so that teleportation only
occurs if Pacman survives the encounter.

All of these special cases are explicitly addressed within
the domain encoding, either through carefully ordered
preconditions and effects or through the introduction of
intermediate predicates that capture transient states.

Domain Design Heuristics

The formulation of this domain was not a simple
transcription of Pacman mechanics into PDDL, but the
outcome of a deliberate design process guided by
engineering heuristics.

From the start, modularity and semantic clarity were
prioritized. Auxiliary predicates such as check-kill,
check-dead, and get-fruit were introduced to
decouple the temporal dependencies of combat, movement,
and inventory management. This reduced unintended
interactions and simplified solver reasoning. Such modeling
reflects a heuristic of hierarchical abstraction, in which
complex game rules are decomposed into smaller logical
units that can be consistently recombined.

Compared to other domains in the competition, this
formulation distinguished itself not only by its
expressiveness but also by its optimization of predicates
and actions. Whereas alternative solutions often introduced
a larger number of actions to capture game mechanics and
state transitions, this domain followed a principle of
simplicity and precision. Actions were designed to be both
specific and reusable, thereby avoiding unnecessary
proliferation.

In addition, auxiliary predicates and optimized
preconditions were employed to mitigate bottlenecks in the
action flow. This prevented the over-constraining of actions,
a common issue in other domains that limited parallel
execution, and avoided generating excessively long action
sequences to conclude a turn. By reducing redundancy and
structuring the model around well-defined auxiliary
conditions, the formulation maintained efficiency without
compromising correctness or expressiveness.

Finally, the domain proved particularly effective for a
detail-oriented problem thanks to its layered design. Each
aspect of gameplay, movement, combat, environment, and
inventory, was modeled in a separate representational layer,
interconnected through well-defined predicates. This
separation of concerns ensured that even intricate edge
cases, such as simultaneous ghost elimination and fruit
collection or teleportation combined with combat, could be
resolved correctly without compromising plan validity.

Problem and Plan Example

To further understand how the game and the domain
formulation works, it’s important to analyze a problem and
a plan that solves it. Figure 2 represents a simple map of the
game, one that does not feature portals or ice, only the three
ghosts, their respective fruits and a few pellets.

Figure 2: Example of problem.

To better visualize the action and reaction of Pacman’s
movements and their costs, the following plan, which
solves the map with the lowest possible cost, will be used
for analysis: (1) S; (2) S; (3) E; (4) N; (5)
W; (6) wW; (7) wW; (8) N; (9) N; (10) Nj;
(11) E; (12) N; (13) W; (14) W; (15) E;
(16) E; (17) E; (18) E; (19) S; (20) N
(21) N; (22) N; (23) W; (24) W; 54.

This set of characters represents the sequence of moves
Pacman will execute to successfully complete the game.
Each move is labeled with its number in parentheses, and
the final number stands for the total cost of all moves. Each
letter represents a direction: S for South, E for East, W for
West, and N for North. Two key moments in the game will
be highlighted to illustrate some of its mechanics.

The first moment of interest happens at move number 11,
when Pacman moves to the right, even though there is a
wall there. This collision with the wall does not make
Pacman leave his position, however, it causes the Green
Ghost, who mirrors Pacman’s movements, to move right.
This maneuver then allows Pacman, in the next two moves,
to eat the Green Ghost. Figure 3 shows the current state of
the game right after move 11. This movement shows the
importance of Pacman colliding with the wall, instead of
trying to chase the Green Ghost until they -collide,
providing a much cheaper alternative.

The second key moment happens at move 20. Figure 4
shows the World State right after move 19. This moment
illustrates, first, that Pacman does not necessarily need to
chase a ghost to eat it, and second, how the ghosts
movements can be used in favor of the player. After move
20, the Red Ghost follows its clockwise movement
sequence and ends up colliding with Pacman on its own,
leaving only one ghost remaining.

4

)
)
)

Figure 3: World State after movement 11.

Figure 4: World State after movement 19.

Generating Maps

The algorithm used for map generation simulates the
construction of mazes using classical path generation
techniques. Within this script, three main algorithms are
provided: Hunt-and-Kill, Recursive Backtracker, and
Prim’s algorithm modified for mazes. The central idea of
each of these methods is to start from one cell and carefully
explore neighbouring cells, connecting them in such a way
that a complete path between all of them can be defined
without creating redundant cycles.

In Hunt-and-Kill, we start at a random cell and create a
path linking adjacent cells that have not yet been visited.
When we reach a cell with no unvisited neighbours, the
algorithm “hunts” for a new unconnected cell adjacent to an
already connected one, and restarts the process until all
cells in the grid are linked (Buck 2015).

The Recursive Backtracker, in turn, uses a depth
approach (similar to a depth-first search) where we start
from an initial cell and randomly choose unexplored
neighbours, recording the path in a stack. If a cell reaches a
state where it has no unvisited neighbours, the algorithm
backtracks using the path stack until it finds an option to
continue (Buck 2015).

Lastly, Prim’s algorithm starts from an initial cell and
expands the maze by choosing a new cell to connect from
the active cells (cells that are linked but not visited),

ensuring that new paths are always added in a controlled
manner, avoiding the creation of closed loops in the path
(Cormen et al. 2009).

Once the basic structure of the maze is generated by any
of the methods above, an additional technique, called
“braiding”, can be applied. This process reduces the
number of dead ends by inserting extra connections
between cells, creating alternative routes and smoothing the
layout of the maze. Finally, the script defines random start
and end points in the maze, ensuring a minimum distance
between them to guarantee the complexity of the path. The
entire process is carried out with random parameters,
allowing for wvariety and the possibility of exact
reproduction of the maps through the random seeds used.

After generating the mazes, additional elements
characteristic of the Pacman game were incorporated
randomly. Among these elements are ghosts, fruits, portals,
and ice floors. These elements were positioned to ensure
that each instance of the maze is unique. Based on the
inclusion or combination of these features, the maps were
grouped into four distinct types:

* Maze: traditional maze layout with no additional
dynamic elements;

» Ice-Maze: maps containing slippery tiles that affect the
agent’s movement;

* Tele-Maze: maps with teleportation portals connecting
non-adjacent regions;

* Full-Maze: maps combining both ice and teleportation
effects.

After the full generation of map content, a crucial
filtering step was performed. Since there was no guarantee
that a generated map had a valid plan, we employed our
own planning solution to execute each map. The solver
attempted to find a plan, and based on the execution time or
failure to solve, each instance was automatically
categorised.

The opted planner for our benchmark is Fast Downward,
specifically Fast Downward Stone Soup 2023 version
(Btichner et al. 2023), made for IPC 2023 competition (IPC
2023). The aliases used for Agile, Satisficing and Optimal
tracks were lama-first, segq-sat-fdss-2023 and
seg-opt-fdss—2023, respectively.

The classification scheme was based on the total solution
time required, grouped into fixed ranges: < 5s, < 10s,
< 15s, < 20s, < 30s, < 60s, < 90s, < 120s, < 150s,
< 180s, < 240s, and < 300s. Instances where no solution
could be found were labelled as unsolvable. This entire
process was automated and parallelised using three separate
machines, each utilising up to six processing cores to
evaluate the instances concurrently.

Number of maps
w & o o
g 5 g 2
g 2 8 8

S

S

S
T

m I il i HH HHH bl o L

‘
S v S g v v v v v v v
N T R A O S I

‘ﬂl]MazeDDIce Maze[l0 Teleport Maze | * Full Maze \

Figure 5: Distribution of generated maps by solution time
and maze type.

Figure 5 illustrates the distribution of solvable instances
across solution time intervals, highlighting the relative
complexity of each map category. Maps featuring
additional mechanics, such as slippery tiles (ice) or
teleportation portals, tend to be harder to solve or require
significantly more planning time. All results were obtained
using the lama-first alias of Fast Downward, which
halts after finding the first valid plan.

Gathering these maps is essential to test domains of
Mojified Pacman, but as we intend to develop planning
competitions using this problematic, we aimed to further
filter the maps, developing a qualified set of problems that
can provide a good benchmark of the domains. Taking
inspiration on IPC competitions, we divided our
competition in three previously mentioned tracks (agile,
satisficing and optimal), so we need a collection of maps
hand-picked for each of these tracks. The selection process
of each track is as follows:

Optimal track: Maps for the optimal track were selected
by filtering only those instances for which Fast Downward
(alias seg—opt-fdss—-2023) was able to find and prove
an optimal plan. From the resulting pool, we retained maps
whose solving time ranged between 60 and 300 seconds,
ensuring meaningful computational difficulty. A total of 40
maps were selected, evenly distributed across structural
categories: 10 maps with ice tiles, 10 with teleportation
portals, 10 with both, and 10 with neither.

Additionally, we incorporated solving time stratification:
10 maps were solvable in 60—120 seconds, 20 in 120-180
seconds, and 10 in 180-300 seconds. This stratification
ensures that if a competing model is significantly more
efficient than ours, it will stand out by solving a greater
number of instances within the allowed time.

Optimal track has a time limit of 180 seconds for the
planner to find a solution, so the stratification also helps to
avoid a domain solving all the problems.

Agile track: Maps for the agile track were selected from
instances solved under 60 seconds using the lama-first
alias. The goal of this track is to evaluate fast response
times in moderately complex settings. From this pool, we
selected 40 maps, again balancing structure: 10 with ice, 10
with portals, 10 with both, and 10 with neither.

In terms of runtime intervals, 15 maps were solvable in

under 5 seconds, 20 in 5-30 seconds, and 5 in 30-60
seconds. This configuration emphasizes fast planning and
rewards highly efficient solutions.

Using the same logic as in the optimal track, agile has a
30-second time limit, explaining the choice of easy, medium
and hard maps when taking the time to solve the problem in
account.

Satisficing track: Maps for the satisficing track were
selected by combining two filtered subsets: instances
originally solved under the agile configuration (60-180
seconds) and optimal instances requiring 180-300 seconds
to solve. This ensured a mixture of moderately hard and
more complex problems. We selected 45 maps in total: 10
with ice, 10 with portals, 10 with neither, and 15 combining
both features.

Regarding runtime stratification, we included 10 maps
from the 60-120 second range (agile), 10 from 120-180
seconds (agile), 15 from 180-240 seconds (optimal), and
10 from 240-300 seconds (optimal). As with other tracks,
this configuration enables performance distinction for
planners that outperform our baseline under constrained
resources. The time limit of this track is 180 seconds.

Our PDDL formulation was also developed to have a
base implementation for the competition, so students could
have a parameter of how good or bad their solution was. We
conducted several experiments to formulate this base, but
with the Fast Downward planner (Helmert 2006) we
achieved the best results. The idea was to try different
planners with different heuristics so we can conclude which
decision making technique fits Mojified Pacman the most,
but a lot of the planners tested did not support conditional
effects feature, heavily used in our formulation.

Furthermore, some planners did support conditional
effects, but, they resulted in Time Limit Exceptions (TLE)
in most of the problems, making the result of the
benchmark unhelpful to our comparison of heuristics. A
Time Limit Exception results when a planner cannot find a
satisfiable plan within a predetermined time span. The
planners tested that resulted in more TLEs than Solved
problems were Madagascar (Rintanen 2014) and Fast
Downward with seg—opt-merge—-and-shrink alias.

Mojified Pacman 2024 Competition

In the second half of 2024, we organized an undergraduate
level competition in our university to promote the Al
Planning landscape. This benchmark and map selection
process was essential to build a good reference point for the
solutions that would be submitted in the competition.

The purpose of generating several instances of maps is
to build a set of problems used to evaluate the quality of
different solutions. Running different domains with the same
set of problems gathers valuable insight about which planner
or solution is better for this specific game.

Following the footsteps of planning competitions such as
International Planning Competition (IPC), we divided our
contest into three tracks: Agile, Satisficing and Optimal. The
Agile track tests how quickly the planner finds a valid plan,
giving insight on the quality of the domain. The Optimal

track tests if the domain is capable of generating optimal
plans for each map, which checks if every rule of the game
is modelled in the domain. The Satisficing track tests the
overall quality of the plan found in a specific time range, as
it takes both time and total cost into account for its score.
For each track we have a specific way of calculating a score,
taking into account total cost of movements and the time to
get a plan.

The method of calculating the score of each track was
based on planning competitions. Using IPC 2023 as an
example, their method of calculating the score of each track
is basically equal to ours, but they are evaluating planners,
not domains. Another difference is the time limit of each
track, which are, for agile, satisficing and optimal
respectively, 5, 30 and 30 minutes.

This difference in time limits exists because the
competition takes place within a restricted time window.
Since participants are allowed to resubmit their solutions,
and the event runs in parallel with the university semester,
faster test runs give students the opportunity to make more
submissions during the contest. This process is important
for learning, as the feedback from each attempt helps refine
their models by highlighting both mistakes and correct
approaches. The total score of a submission is calculated by
the sum of the scores of each track, and each track has its
own scoring system:

¢ Agile Score: if a satisfiable plan is generated in less than
1 second, 1 point is added to the score, otherwise, the
score is calculated by the following formula:

log(EXECUTION _TIME)
log(30)
« Satisficing Score: C'* is the total cost of movements in

the reference plan and C'is the total cost of movements
in the generated plan.

score =1 —

*

C
¢ Optimal Score: the score is the number of solved maps.

score =

To assess the performance of the submissions of the
competition, agile experiments ran on 3 identical machines
equipped with Ryzen 7 2700 CPU (8 cores and 16 threads
with turbo boost off) and 32 GB of memory on Ubuntu
24.04 operating system, with 4 simultaneous instances. For
satisficing and optimal tracks, a computer node with 768
GB of memory and 2 Intel Xeon E5-2680 v3 (12 cores and
24 threads), running 24 simultaneous instances.

Competition Results

Table 2 shows the top three submissions of the competition.
The competition had a total of 14 competitors, all
undergraduate students, and our base implementation,
making a total of 15 competitors. The contest remained
open for 28 days, beginning on 26 of january and ending in
23 of february. No submission surpassed our total score.
All the top submissions had a similar approach to solving
the problem, including our own, which is to have a very

Table 2: Competition Leaderboard.

Submission Agile Satisficing Optimal Score

Base 8.57 34.51 24 67.08
Student 1 5.01 28.98 24 57.99
Student 2 6.10 14.01 18 38.11

descriptive approach to the problem, having actions and
mapping every kind of possible movement of Pacman.
Unfortunately, no submission surpassed our base
implementation, and our team is looking forward to
producing another competition in the near future so we can
have different approaches to the game. This competition
was not able to organize the variety of domains and lines of
thought we were aiming for, so we hope the next
competition can achieve this.

Conclusion

In this work, we presented a novel PDDL model of a
modified version of the classic game Pacman, aimed at both
educational and research purposes in Al planning. The
domain was designed to encourage the development and
evaluation of planning models in a game-like setting,
serving as the foundation for past and future modeling
competitions.

We discussed the main modelling choices and
challenges, particularly the representation of different
flooring types — such as ice and teleporters — and the
conditional effects related to interactions with ghosts.
These elements required careful formulation to ensure
accurate and expressive encodings in PDDL.

Our evaluation focused primarily on the Fast Downward
planner, using the agile, satisficing, and optimal tracks. The
results illustrate the complexity induced by the domain and
the varying effectiveness of different planning strategies in
this context.

As future work, we plan to expand the benchmark set
and promote student designed models as part of a
competition, fostering engagement with planning
techniques and the expressive power of domain modeling.
As of right now, our solution looks too robust, as we model
every detail of the game. To propose a competition of this
problem will help develop other solutions to compare the
best way of modelling Mojified Pacman. At last, this game
helps to discover different and efficient ways of modelling
complex and highly detailed problems.

References

Biichner, C.; Christen, R.; Corréa, A. B.; Eriksson, S.;
Ferber, P.; Seipp, J.; and Sievers, S. 2023. Fast Downward
Stone Soup 2023. Prague, Czech Republic.

Buck, J. 2015. Mazes for Programmers: Code Your Own
Twisty Little Passages, 73—80. Pragmatic Bookshelf.

Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein,
C. 2009. Introduction to Algorithms, 631-642. Cambridge,
MA: MIT Press, 3 edition.

Fox, M.; and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. J. Artif.
Intell. Res. (JAIR), 20: 61-124.

Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191-246.

Imabayashi, H. 1982. Sokoban. Arcade game.
IPC. 2023. International Planning Competition (IPC). IPC.
Iwatani, T. 1980. Pac-Man. Arcade game.

McDermott, D. 2000. The 1998 Al planning systems
competition. AI Magazine, 36.
Rintanen, J. 2014. Madagascar: Scalable Planning with SAT.

In Proceedings of the International Planning Competition
(IPC) 2014.

